Effect of the major repeat sequence on mitotic recombination in Candida albicans.
نویسندگان
چکیده
The major repeat sequence (MRS) is known to play a role in karyotypic variation in Candida albicans. The MRS affects karyotypic variation by expanding and contracting internal repeats, by altering the frequency of chromosome loss, and by serving as a hotspot for chromosome translocation. We proposed that the effects of the MRS on translocation could be better understood by examination of the effect of the MRS on a similar event, mitotic recombination between two chromosome homologs. We examined the frequency of mitotic recombination across an MRS of average size (approximately 50 kb) as well as the rate of recombination in a 325-kb stretch of DNA adjacent to the MRS. Our results indicate that mitotic recombination frequencies across the MRS were not enhanced compared to the frequencies measured across the 325-kb region adjacent to the MRS. Mitotic recombination events were found to occur throughout the 325-kb region analyzed as well as within the MRS itself. This analysis of mitotic recombination frequencies across a large portion of chromosome 5 is the first large-scale analysis of mitotic recombination done in C. albicans and indicates that mitotic recombination frequencies are similar to the rates found in Saccharomyces cerevisiae.
منابع مشابه
Models for the Evolution of GC Content in Asexual Fungi Candida albicans and C. dubliniensis
Although guanine-cytosine (GC)-biased gene conversion (gBGC) following meiotic recombination seems the most probable mechanism accounting for large-scale variations in GC content for many eukaryotes, it cannot explain such variations for organisms belonging to ancient asexual lineages, such as the pathogenic fungi Candida albicans and C. dubliniensis. Analysis of the substitution patterns for t...
متن کاملTca1, the retrotransposon-like element of Candida albicans, is a degenerate and inactive element.
Candida albicans is an asexual fungus and as such must rely on mechanisms other than sexual recombination to generate genetic diversity. Retrotransposons are ubiquitous genetic elements known to generate multiple types of genomic alterations. We have further investigated the nature of the retrotransposon-like element Tca1 in C. albicans. Tca1 is present at two loci in strain SC5314. Both loci h...
متن کاملMolecular epidemiology, phylogeny and evolution of Candida albicans.
A small number of Candida species form part of the normal microbial flora of mucosal surfaces in humans and may give rise to opportunistic infections when host defences are impaired. Candida albicans is by far the most prevalent commensal and pathogenic Candida species. Several different molecular typing approaches including multilocus sequence typing, multilocus microsatellite typing and DNA f...
متن کاملChromosome loss followed by duplication is the major mechanism of spontaneous mating-type locus homozygosis in Candida albicans.
Candida albicans, which is diploid, possesses a single mating-type (MTL) locus on chromosome 5, which is normally heterozygous (a/alpha). To mate, C. albicans must undergo MTL homozygosis to a/a or alpha/alpha. Three possible mechanisms may be used in this process, mitotic recombination, gene conversion, or loss of one chromosome 5 homolog, followed by duplication of the retained homolog. To di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 174 4 شماره
صفحات -
تاریخ انتشار 2006